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Summary

We list recent ideas in stochastic geometry which are closely related to
image analysis. These include the synthesis of stochastic models of images,
techniques for evaluating models and algorithms, general concepts of ‘geome-
trical information’ and the theory of random sets, problems of image irregular-
ity and errors in observation, techniques of geometric integration theory, and
fractional dimensional irregularity.

1. Introduction

The development of computerized image processing and image analysis
already seems to have prompted considerable study of the relations between
geometry, probability theory and computer science. Rosenfeld [29, preface]
observes that all image processing algorithms must be based explicitly or impli-
citly on mathematical models of the images to be processed. Some of the newer
stochastic image models presented in [29] are based on Markov processes, ran-
dom fields, random mosaics (tessellations) and stochastic grammars. Apart
from image modeling, we imagine other mathematical contributions should
include a theoretical background for the comparison of algorithms, and
mathematical techniques for the treatment of image models.

Independently of such requirements, many concepts related to image
analysis have evolved in other areas, notably in stochastic geometry, stereology
and geometric integration theory. Stochastic geometry is that part of probabil-
ity theory dealing with random subsets of a geometrical space, and interactions
between probability and geometry. This includes all stochastic image models,
at least in principle, but some frequently studied models are: elementary con-
structions of random lines, circles or triangles; spatial schemes such as random
mosaics and random coverings of the plane; and general random processes and
random sets. The main body of theory concentrates on uniformly random
models, for which there are simple explicit solutions. However, the last decade
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has seen the introduction of more flexible techniques and a completely general
theoretical foundation for random sets.

This paper summarizes some recent work in stochastic geometry (drawing
also on stereology and geometric integration theory) which could be connected
with image analysis. Section 2 introduces the range of random image models in
stochastic geometry, and outlines the classical theory of uniformly random
models. The more recent combinatorial theory (section 3) has an application to
problems of image complexity. Section 4 discusses the Kendall-Matheron
abstract theory of random sets, which has many similarities to tenets of image
analysis. J. Serra’s mathematical morphology and image analysis theory is
touched upon in Section 5. Recent thoughts about image irregularity and
observation errors (Section 6) are developed using geometric integration theory.
Finally Section 7 speculates on the usefulness of fractal (fractional dimen-
sional) models of image irregularity.

2. Classical stochastic geometry

Detailed surveys of stochastic geometry can be consulted in the literature
[24, 3, 7, 32, 35] and we shall give here a very brief sketch. Probability models
available for generating random geometrical objects (hence random image
models) can be classified as

(a) elementary constructions;
(b) stochastic processes;
(c) theory of random sets.

(a) Elementary constructions are the simple geometrical figures of Euclid with
an added component of randomness, as for example the output of a computer
graphics program when the input is a random number generator. Points, lines,
triangles, circles and other figures are determined by n <co real parameters so
that a random figure can be defined as a probability distribution on the n-
dimensional parameter space. Of course we may also construct the random line
joining two random points, and so on. Using parametrisations of the rotation
and translation groups we may generate random positions of an arbitrary
object. Typical problems include finding the probability that two random fig-
ures (or a random figure and a fixed figure) will intersect; the mean area of
length of overlap between figures; and the probability that N random figures
will completely cover a specified region.

Even the simplest problems for random figures lead to difficult multiple
integrals. An exception to this rule is that uniformly distributed random figures
often lead to simple explicit solutions. For example, a random two-dimensional
point X = (x,,x,) is a uniformly random (UR) point in the region A4 CR? if it
has constant probability density f(x;x;) = K. The constant must be
K = l/area(4) since probability integrates to 1. For any measurable subset
B CA we find the probability

P(X falls in B) = %2(%’ (D



which is what we understand by a ‘simple explicit solution’. Now consider a
random circle C(X,r) of fixed radius r obtained by randomizing the centre
point X. Let X be a uniformly random point in the disc Dg ;, of radius R +r
and centre 0. Then the circle C(X,r) always intersects Dy, the disc of radius
R about 0. We say C(X,r) is a uniformly random circle hitting Dg. For any
(fixed) point x €Dy,

1rr2
(R +r)

by (1), which does not depend on x. Furthermore, the mean or expected area
of overlap between C(X,r) and Dy is by Fubini’s theorem

E(area C(X,r)NDg) = fP(x lies in C (X ,r))dx
D

P(C(X,r) contains x) = P(X falls in C(x,r)) =

2

_r
(R+r)*’
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i.e. proportional to the product of areas of C(X,r) and Dpg.

Definition of a uniformly random line is less intuitive. Let parameters (p ,6)
specify the line

{(x,y):xcosf + ysind = p},

i.e. |p| is the distance of the line from the origin, and 6 determines its direc-
tion. A uniformly random (UR) line is such that (p,) is a uniformly distributed
point in some bounded region of R X[0,7). For example a UR line hitting the
disc Dy is obtained when p and @ are independent random variables uniformly
distributed over [—r,+r] and [0,7) respectively. In general for X CR? the set
of lines intersecting X is some irregular set of (p,d) points in the allowable
region. To generate a UR line hitting X, in practice, find a disc Dy cir-
cumscribing X. Generate a UR line L hitting Dg; if LNX = @&, reject this
attempt and generate another line L; until L hits X. Then L is UR hitting X .

UnForm random ne hiting X
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Uniform random lines have the invariance property that if L is a UR line
hitting X, and if Y CX, then the probability P(L hits Y) does not depend on
the position or orientation of ¥ within X. All parts of X are equally likely to
be ‘sampled’ by L. This fair sampling property, which characterizes the um-
form distribution, can be recognised as invariance under the euclidean group
of rigid motions. Another nice characterization of UR lines 1s based on the
two-person game where A ‘hides’ a set Y inside X and player B draws a line
L through X to find Y. Optimal strategy for B is to generate a uniform ran-
dom line.

We state two fundamental results concerning UR lines. Let L be a UR line
through X, a bounded measurable plane set. If A C X is measurable then

E length (L NA) = Zﬂ%ﬂ @

where E again denotes expected (mean) value, and K is a constant depending
on X.If C CX is a plane curve then

En(LNC) = 2.lengI;thg 3)

where n(L N C) is the number of intersection points between L and C. Thus,
the mean amount of overlap between a UR line and a fixed figure is given by
(2), (3) regardless of the geometrical configuration of the figure. This general-
ity is the basis of the classical theory. Corresponding formulae hold in higher
dimensions and noneuclidean spaces [30].

Apart from the obvious application of (2)-(3) to stochastic image models,
we can interpret them to give methods for measurement of length and area. If
an image consists of several curves, their total length can be statistically
estimated by randomly rotating the image, superimposing a grid of parallel
lines and counting the number of crossing points.

Statements about image complexity also follow from (2)-(3). Suppose the
image consists of curves of total length /, the screen is divided into an n Xn
square grid, and we wish to estimate the number of grid squares which contain
part of the image. Assuming the image and grid are randomly superimposed,
the mean number of grid-image intersections is 4(n —1)/. For large n this
approximates the mean number of squares crossed, i.e. the mean complexity.

Stochastic image models may also be based on (b) stochastic processes. To
generate a random pattern extending over the entire plane, divide R? into
squares, and place a random number of random points in each square. A ran-
dom pattern of lines is a random pattern of (p,#) points in R X[0,7), and so
on. Thus we define a random point process in space S as a random locally fin-
ite set of points in S, where ‘locally finite’ means each bounded region of S
only contains a finite (random) number of (random) points. A random line
process ‘is’ a random point process in R X[0,7), or more intrinsically, is a ran-
dom locally finite set of lines in R% In calculations one uses the correspon-
dence between a random point process and the system of random variables



N(A) = (number of points in 4), A CS, which constitute a random measure
N()on S. A random line process is a random measure on R X[0,7), or intrin-
sically, corresponds to a random capacity function H(4) = (number of lines
intersecting A), A CR?. See [18,12].

A finte population of spheres in R’
or
a reaksation of a random sphere process

Explicit calculations are usually unsuccessful except for uniform Poisson
processes, in which each bounded part of the process consist of independent
uniformly random points/lines, and N(4), N(B) are independent when
ANB = @. Equations (1)-(3) yield the expected values of N(4), H(A4), the
number of crossings of a fixed curve, the total length of lines overlapping 4,
and the number of line-line crossings inside A4 .

General random point processes and line processes have been studied using
moments [12,19,32] and Palm probabilities [26]. For a point process the first
two moment measures are the intensity measure u(4) = E[N(4)] on R?, and
the second moment measure p® on R*XR? defined by yPA XB) =
E[N (4 )N (B)], which together contain all variance-covariance information. If
the process is statistically stationary, then w(4) = A.area(4 ) where A>0 is the
intensity, while p® ‘disintegrates’,

dp®(xy) = dy(y —x)dpix) xyeR?

and the measure y on R? describes correlations between points in the process.
The correlation characteristics can be estimated from observations of the pro-
cess, furnishing a general empirical approach to point- and line- processes [33].
Second-order statistics characterize many of the visible characteristics of an
image or pattern [I1], but are not infallible [28,5]. A direct analysis of



dependence between points or lines in a process is obtained using the Palm
probabilities P*, essentially the conditional probability distribution of the ran-
dom process given that there is a random point at x.

A random line process or circle process subdivides the plane into a random
tessellation. This is a potentially important model of random images [14, 24,
31). Characteristics of the polygons formed by a Poisson line process have
been determined by Miles [23], in particular the means and variances of
polygon area, perimeter length and number of sides. Another important ran-
dom tessellation is the Dirichlet or Voronoi tessellation: if {x;,i €Z} are the
points in a point process, let the tile corresponding to x; be

T, = {yeR%:ly —x |<ly —x;|, j#i).

The T; are polygons tessellating R%. Characteristics of the Voronoi tessellation

induced by a Poisson point process are given by Miles [21].

Finally, random image models can be based on (c) the theory of random
sets. This is discussed in Section 4.

3. Combinatorial theory

More results have recently been obtained for classical problems, by simpli-
fying geometry and applying combinatorial probability methods [1]. We will
first prove the curve length formula (3),

En(LNC) = 21eng12th)

where C is a plane curve, L is a UR line hitting X DC, and n(LNC) =
number of intersection points in L NC. Suppose C is a polygonal curve con-
sisting of line segments S, .. .,S,. Let [S;] denote the event L NS;5# @,
that is L hits S;. Put

1if LNS,#2
Isi= 10 if LNS;=2.

Clearly we have

n

i=1

with probability 1, since P(L contains S;) = 0. But immediately

En(LNC) = iﬂfl[s,] = éP([Si])-

i=1 i=1
It can easily be argued that uniform random lines have P([S;]) proportional to
length (S;);

n

En(L NC) = a ) length (S;) = a. length (C)

i=1



which proves (3) up to the constant factor.

The proof reveals importance of additivity, meaning both the linearity of
the integral E and the additivity of the counting function n(L NC). Together
with the natural properties of uniform distributions, this property forms the
basis of stochastic geometry.

Suppose now we want the distribution of the variable n(L N C): computa-
tion of P{n(LNC) = k} is not obvious. Consider two segments S .S, and
evaluate P ([S{]N[S;]), the probability that L intersects both S,S,. Case 1: if
S1,S, have a common point, let T be the third side of the triangle. Then

Lisgnisa = 3U0sg+ Lisg— Ly as.

since if L intersects both §,,S; the sum in brackets equals 2, and otherwise is
zero. Case 2: if §,S; have no common point we can derive a similar expres-
sion

Lisgnisa = 2Qpagt g — iy~ lis) as.

where 4, A4,,B| B, are segments joining the four endpoints of S,5,. But this
implies that every expression lisns,) = lis,} lis,) can be written as a linear com-
bination of variables 1;r,}, where T} are line segments joining vertices of C.

Theorem. Let x,, . ..,x, be points in R and s;j the line segment joining x;
with x;. For a random line L, let [s;;] be the event L Ns;; 7. Let @ be the ring
of events generated (through unions, intersections, set differences) by [s;]
<i<j<n. Then for any A €Q there exist constants c;;(A) such that
Ly = D), 4
i<j

holds except when L contains a vertex x;.

If L is uniformly distributed we take mean values in (4) to get
P(A) = 2/K Fc;()lix; — x| 5)
i<j

i.e. all combinatorial probabilities for UR lines are expressible as sums of
lengths of segments s,;. For example, the distribution of n(L NC) is expressi-
ble in terms of the distances between each pair of vertices of C. This is a great
advance, in principle, on the classical theory which was restricted to mean
values. An algorithm for the c;;(4) is known, and practicable for small n.

One can also take non-uniform random lines in (4), say with probability
distribution Q, to obtain
Q) = Xc;(4)Qls] (6)
i<j
and note the coefficients ¢;;(4) are the same as above. The quantity Qfs;]
serves as a generalized length of s;. Thus, again in principle, nonuniform



random lines are no more computationally difficult than UR lines.

Finally we present another application to image complexity, concerning the
quad-tree representation of images. An image can be recorded or transmitted
as tree structure, as follows. Divide the image field into four equal squares
and note which squares, if any, consist of a single colour. The remaining, mul-
ticoloured squares are subdivided again into four, and the process repeats until
a predetermined level of subdivision is reached. The record of subdivisions and

Quad-tree representation of images

colours forms the quad tree. Important questions include the average complex-
ity (number of nodes) of the quad tree, and estimating the increase in complex-
ity if a deeper level (finer subdivision) is added. Both problems depend on the
image, but it is reasonable to suppose that in a sufficiently small square, the
image boundary can be regarded as a uniformly random line. Consider a UR
line hitting a square subdivided into k Xk equal squares. According to (3) the
mean number of subsquares crossed equals k. Furthermore using (5) we can
compute the distribution of the number N of subsquares crossed. In the
interesting case k = 2, we have P(N =1) = %(\/5—1), P(N =2) = 2—-V2,
P(N =3) = %(\/—?:—I). Thus the cost of adding one extra level of subdivi-

sion is to double the number of terminal nodes, on average. One fifth of the
new branches will be triple.

4. Random set theory
In addition to the constructive examples of random geometry in Section 2,



one can propose others such as the zero-set (or contours) of a random func-
tion. Foundations of a general theory of random sets were laid by G. Math-
eron [18] and D.G. Kendall [13]. Matheron’s theory of random closed sets was
expressly developed as a mathematical background to image analysis as well as
stochastic geometry. Kendall’s theory takes an abstract view of the construc-
tion of probability spaces of random sets, emphasising the variety of structures
which can be chosen. The two approaches are complementary [27] and both
make use of Choquet’s capacity theorem.

To introduce the theory we generalize the random events [S;] which played
a formative role in section 3. For the Matheron approach, let 9 be the class of
all closed sets in R". If T CR" define the hitting set

[T] = (FEFFNT+#D).

Endow & with the (weakest) topology such that [U] is an open subset of & for
all open sets UCR", and [K] is closed for all compact K NR" (see [20]).
Then & becomes a Polish space. Define a random closed set as a random ele-
ment of ¥ with the Borel o-algebra. Under this structure the events [T], T CR"
are measurable when T is open, closed or indeed Borel. Intersections and
unions of random closed sets are random closed sets. Area, length (where
defined) and number of points (where finite) are random variables.

Kendall’s approach emphasises that the definition of a random set depends
on the geometrical information which is assumed to be observable. Its basic
constituents are the random events [T} = {X NT+#&} where X is the ran-
dom set and T is a fixed set called a ‘trap’. The associated random variable

1 if XNT4D
h(T) = {0 if not M

corresponds to a ‘bit’ or ‘flag’ indicating whether X was detected by the trap
T. From the observer’s point of view, the random set X is characterized by the
information {h(T),T €F} where 9 is the class of all traps available to the
observer. Define a trapping system J on a space S to be a class of nonempty
subsets of S, which cover S, satisfying certain properties analogous to separa-
bility and local compactness. A random -set in S is a random function

h:9-{0,1}

i.e. a stochastic process of 0-1 variables 4 (T'), T €9, subject to a consistency
condition which enables A to be interpreted in the form (7). Note the probabil-
ity structure depends completely on the choice of trapping-system. If § = R”"
and 9= open sets, a random J-set is a random closed set in Matheron’s sense.
Smaller trapping-systems may be inadequate to distinguish all closed sets. A
set X is indistinguishable (to the observer) from its J-closure,

clos(X,€D=[ UrTl=nTr

XNT=0o XNT=92

10



(¢ denotes complement) and we need only consider Y-closed sets
X = clos(X,9). For example if 5 = {open halfplanes of R?} the J-closed sets
are the convex sets of R%. Thus random J-sets in this case ‘are’ random convex
sets; and the customary representation of convex sets by support functions can
be derived from h(T).

Random set theory provides solid foundations for investigating both sto-
chastic geometry and the observation and processing of images. For example,
convergence of random sets is a natural concept in the general theory which
has been applied to assess errors committed in digitizing an image, approxima-
tion of one image by another, and the stability of image processing transforma-
tions [31, Chapter VII] and to derive the statistically important laws of large
numbers and a central limit theorem for repeated observations of images [2,36].
The general setting also permits more involved discussion of the probabilistic
properties of image models, such as infinite divisibility and the semi-Markov
property [18,19]. It is a basic result that the probability distribution of a ran-
dom set X is determined by its avoidance function

Q) =Prob(XNA=8), A= UT,, T;eT
i=1
and the introduction of Q makes for a coherent approach to image models
[31,18].

The strongest link between image analysis and random set theory is surely
the trapping system. Any image is given to us through an array of detectors
(and perhaps subjected to edge detection processing, etc.) which can be formal-
ised as a trapping system. Further, the relationships between various forms of
image information (e.g. digitized versions on different lattices; grey tones) can
be studied by varying ¥ in the stochastic model. The author feels that the great
potential of this method is yet unexplored.

5. Mathematical morphology

The work of J. Serra [31] establishes a coherent methodology for image
analysis which avoids the fragmentary character of most other approaches.
Mathematical morphology developed in parallel with random set theory, begin-
ning with Matheron’s [17] geostatistical work and Serra’s invention of the ‘tex-
ture analyzer’ image processing devices. The result is a combination of sound
theoretical criteria with practical experience. We can only convey the flavour of
the subject here.

Transformations of sets arise in many stochastic geometry problems. Con-
sider the S)robabih'ty distribution of the random distance d(x, 4) from a fixed
set A CR* to a random point x ¢4 . Clearly P {d(x, A)<r} equals the proba-
bility that X falls in the region 4, = {x eR*d(x, A)<r} which we dub the
r-envelope of A. Equivalently A4, is the set formed by placing a disc of radius
r around every point a €4 . The envelope transformation 4 —»4 ) is the sim-
plest example of a set transformation. If A = Dp is a disc then 4,) = Dg 4,

11



while in general the shape of A, is more rounded (with smaller holes) than
that of A. It is argued that the function f,(r) = area (4 reflects essential
characteristics of the geometry of A. If A is convex then f,(r) = ar? + r.
length (34) + area (4), while if 4 is a finite set of points then f, is piecewise
quadratic with a behaviour reflecting the sizes of gaps between the points. A
series of images A}, . . . , A, could be differentiated or discriminated using the
derived functions f4(r), . . ., f4.(r).

The envelope operation can be performed on a discrete grid of points. A
simple algorithm is to scan the entire grid and, for each point x whose digital
neighbourhood includes a point of the current image A4, we mark x for inclu-
sion in the new image A, Furthermore we can waitch this process of expan-
sion for increasing r by repeating the algorithm, since (4 ())s) = A +5)- This
is done by texture analyzers.

The Minkowski sum of two sets A ,B CR? is defined as
A®B = {a+b:acA,beB}

in the sense of vector addition. If B is the disc D, then A ®D, = A, the r-
envelope. More generally A @B is the superposition of translated copies of B
centred on each of the points of A, if we take the origin 0 as the ‘centre’ of B.
Shifted copies of 4 are obtained when B is a single point, A ®{b} =
{atbaed). Deflmng B= {—b:beB)} one can mterpret A®B =
{x eR%:(x ®B) NA = @), the set of all ‘centres’ of shifted copies of Bwhich
intersect A. Hence the transformation 4 -4 ®B also has a clear interpreta-
tion in stochastic geometry, and can be claimed to reflect important charac-
teristics of the geometry of A. This and other set transformations can be
implemented on a discrete grid by including or removing points x according to
the state of the entire digital neighbourhood of x.

Minkowski subtraction of A ,B CR? is defined by
ASB = (A°®BY

i.e. the complement A° is enlarged by B. For example, if B = D, is a disc,
A©D, = {xeAd:ud(x,A°)=r} is the inner parallel set. In general
ASB = {xe€A:x®BCA) is the set of all centres of copies of B contained
in A . This has a natural interpretation and the function g(r) = area (4 ©D,)
is claimed to contain essential information about the geometry of 4. Define
two further set transformations, the closure

A% = U®B)OB
and opening
Ap = (AOB)®B.

Thus Ay is the union of all copies of B contained in 4 ; and 4% is the result
of a similar operation on A°. A set is B-closed, 42 = 4, iff it is 9-closed in
the sense of Section 4 where J is the class of all translated copies of B. Apart

12



from their natural interpretation in stochastic geometry, A% and Ay can be
used to develop a rigorous definition of size and size distribution for images
[18,31].

The mathematical morphology approach to an image processing problem is
to select an image transformation (built from @,0, AB Ap etc.) suitable to
the application, and make numerical analyses of the transformed images. One
chooses transformations either by experience, intuition about the scientific
problem, or by setting down criteria which the transformation must satisfy.

Some limitations of mathematical morphology as it currently stands call for
brief comments. The texture analyser is designed on a hexagonal point lattice
for the digitized image. Naturally the theory is strongly dependent on this
choice of instrumentation, and probably does not answer all questions about
random image models that are required in different applications. Associated
with the choice of instrumentation is the adoption [31, pp 8-15] of a list of
theoretical principles which notably excludes rotational stability. A hexagonal
grid has only three basic directions and there have been difficulties with the
analysis of image orientation or directionality. There may also be practical
reasons for employing a rectangular grid or other system of image detection -
for example, satellite data may already be in this form. Another problem with
all image analysis based on stochastic geometry is that images are not sharply
divided black and white sets, but grey tone functions. This is a drawback to
the widespread use of texture analyzers. Mathematical morphology for grey-
tone functions is under development {31, Chapter XII].

The author suspects one can be led astray by excessive analysis of a single
image, when this image is to be representative of a larger population. This
applies particularly in stereology, where the planar image is a random plane
section X NE of a three-dimensional body X which is the real object of
interest. It is then important that the sampling procedure used to generate
X NE should be known, and appropriate. Statistical inferences depend on the
sampling method used. It is not quite sufficient to base image analysis on con-
siderations of the trapping-system and other geometrical structures, without
incorporating statistical models for the origins of data.

6. Image irregularity, observation errors and geometric measure theory

Elementary formulae from stochastic geometry (see (1)-(3) in Section 2) are
widely used in stereology for measuring curve lengths, estimating surface areas
and so on. Yet these results were derived for ideal smooth curves and it is a
priori doubtful whether they apply to irregular images or images observed
under error.

An extreme example is tangent counting. Let C be a twice differentaible
plane curve, 8€[0,7) and T°*(§) = number of tangents to C parallel to direc-
tion 6. This would be found by scanning a straight line across the image
(parallel to ) and counting the positions where the image is tangent to C. We
have

13



[ T (9)df = j |k(s)ds 8)
0 c

where «(s) is the curvature of C at point s. If the scan direction 8 is generated
at random (uniformly), 7T (@) is a statistically unbiased estimator of the
total absolute curvature of C. Additionally if C is itself a random plane sec-
tion of a curved surface, then T° yields an estimate of the total ‘absolute’
surface curvature.

Tangent counting

Even assuming that real images are differentiable, the tangent count is
unstable in the sense that small perturbations (kinks, ripples) in C may cause
large changes in 7% and . More realistically if C is the boundary of a finite
union of convex compact sets (hence, almost everywhere differentiable) T
does not share the properties usually required of a good statistic. Serra [31,
p-141 ff] nevertheless shows that a precise and useful interpretation can be
given to the tangent count or ‘convexity number’ of such curves, and that this
can be approximately determined from a digitized image.

Practical stereologists and image analysts follow procedures for counting
‘tangents’ to image curves, even when these are irregular, thick or fuzzy, bro-
ken or digitized. A tangent counting algorithm may be built into the image
analyzing device. Mathematicians should be discussing the performance of
such algorithms, their relation to real geometry, and the effects of observation
errors.

14



Standard proofs of (1)-(3) and (8) do not accommodate a discussion of per-
turbations or errors, being applications of Fubini’s theorem to simple geometri-
cal models. We need the more powerful methods of geometric measure theory
[6], principally the coarea formula. Briefly, let M ,N be m- and n-dimensional
domains (rectifiable surfaces), m=n, and let p:M—>N be a Lipschitz-
continuous map. For almost every x €N, p Ux}) = {(zeM:p(z) = x} is an
m —n dimensional rectifiable set. If m =n, then p ~'{x} is a finite set. There
is a function J"p defined on M called the approximate Jacobian of p, such
that the coarea formula

[ p)z)dx™z = [ [ f@)dK" "z dH"x )
M Np '{x)
holds for any J("-integrable function f:M —R, where Ik is the k-

dimensional Hausdorff measure (‘k-dimensional volume integration’, see Sec-
tion 7).

Thus (9) is a kind of generalization of Fubini’s theorem which incorporates
the Jacobian for a change of variables.
To prove (8), for example, let C be a twice differentiable curve, and intro-
duce
C* = {(s.1):s€C, [ is the tangent to C at s }.

This is a one-parameter set of points in R2XR X[0,7). Apply the coarea for-
mula (9) to the map

p:C"=C, p(s)=s
1
This has (J 'p )s, ) = (1+x2) * where k = k(s) is the curvature of C, and
since p ~'{s ) is a single point (s,/) we get

_1
[fD+@) 2d¥Nsd) = [f(s,0)ds
c’ C

for any function f . Similarly, for the map

q:C" -[0,m), q(s,l) = direction of line /,

1
we have (J'g)s,/) = (#/1+«k»)*. Since ¢ '{6) consists of all pairs (s,/)
where / is parallel to 8, we get

T

[FaDN+&) d%K s, = [ fslde
2

0q (6}

If f =1, the sum on the right hand side above is T°s (). Choosing
f(s,]) = Ix| so that the two left hand sides agree, we get equation (8).

Now suppose that C is nondifferentiable, and that the experimenter has
some algorithm for counting or detecting apparent tangents to C. Let

= {(s,0)s eR?/ is a line; the algorithm counts / as a tangent to at s }.
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Then under suitable conditions we may replace C* above by C and perform
the same calculations to get

] T @)do = j ®(s)ds,

where 7° is the experimentally observed tangent count, I' = p(C) is the set
of points at which tangents are detected, and ¥ = J'q/J'p is a kind of gen-
eralized curvature. For example, let C be an irregular curve C(1) =
A@)+e(t), 0<t<1, where curve A is smooth and |le(z)ll<r. If the tangent
algorithm is such that seA4 and / is tangent to A ®D,, then I' = 4, and k is
a function of r and the curvature of A. Thus I is a rectified version of C.
Secondly, if C is smooth, but a tangent where «(s) is small may not be
observed, we get

E(nT) = j (s )| u (k(s ))ds
C

where u(x) = probability of detecting a given tangent at curvature k. Further
examples are explored in [4].

Thus we still have a geometrical interpretation of the image analysis algo-
rithm when it is applied to non-ideal images. This is achieved by concentrating
on intrinsic behaviour of the algorithm or observation method, encapsulated in
the projection maps p,q. More generally we can regard an image analysis algo-
rithm as an operator on images in the sense of generalized functions, and the
mathematical prerequisites for such an approach already exist [6].

7. Fractals

Mandelbrot [15,16)] explored the concept of fractal (fractional dimensional)
sets initiated by Besicovitch, which have wide mathematical associations and
seem to be useful models for real images. The simplest kind of fractal set is
self-similar: if X can be divided into k disjoint sets each of which is congruent
to X after magnification by a factor a, then A = loga/ logk is the similarity
dimension of X. For curves A = 1; for a disc A = 2; but for the Cantor set,
k =2, a =3, A = log3/log2 is fractional. When X is magnified, its content
increases by a fractional power of the magnification. This extreme form of
fractal behaviour is not generally required (except in the limit of small scale).
Define for each real 1 =0 the ¢ -dimensional Hausdorff measure %',

(X)) = hm ¢, .inf{ Z(dlam S;Y:S1.. .., Sy cover X diam S; <e)
i=1

where the infimum ranges over (say) all families of compact sets S; with diam-
eters less than e. The limit may be infinite. Define the Hausdorff-Besicovitch
dimension of X as

D(X) = sup{t=0:%"(X)<oo} = inf{1 =0:3"(X) = o0}
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OO = ¢, m 'nf{Z(diamsif:s,....s cover X.
n

6¢0
damSi<8>

Then X is fractal if D(X) is not an integer. If X is a random closed set (Sec-
tion 4), the topology of ¥ is such that D(X) is a random variable.

Other examples of fractals include the graphs and zero sets of random con-
tinuous functions (the graph of Brownian motion is statistically self similar)
and limit sets of iterations of quadratic maps in the complex plane. The
viewer’s impression of a fractal curve is one of sharp irregularity and
unbounded oscillation.

Real objects and images do often behave non-linearly with magnification.
Coastlines are the best-known example. Given a picture of a fractal curve
(1<D <2) we could estimate D as the slope of the regression line relating
logL (a) to loga, where L(a) is an estimate of length obtained at magnification
a. Applied to coastlines this has produced a range of fractional dimensions,
which seem to reflect degrees of irregularity. A more serious application con-
cerns the measurement of lung membrane surface area [34, p. 156] from plane
section curves. Conflicting estimates based on different magnifications have
been reconciled and a consistent estimate of D obtained.

Many real phenomena and images have been described as ‘fractal’ and
their empirical values of D determined. The theory of ideal fractals has not
kept pace with this development of approximate fractals. Any empirical value
of D is a partial description of the image, at certain scales only, and over dif-
ferent scales the ‘dimension’ may vary. This should not be an objection to the
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use of fractals as a geometrical model (naturally any model is confined to a
chosen scale), but the meaning of a fractal approximation needs to be clarified
[10]. We have already observed that Hausdorff dimension fits into the general
theory of random closed sets, and indeed D (X)) represents an asymptotic index
of the frequency of intersections between X and small traps D, ,r—0. It seems
to the author that fractional dimensional irregularity could be better under-
stood from the empirical and statistical viewpoint of stochastic geometry.
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